
Prerequisite Terminologies:
In order to have a thorough understanding of our main topic, you should
have the basic concept of the following terminologies:

1. Parameters/arguments.
2. Modularizing the code in Python.

Introduction:
A Function is a block/set of organized and reusable code that is utilized to
perform a single, related function. Functions provide better modularity of

your program and high level of code reusing. Basically there are two types
of functions:

1. Built-in functions- The Python ​built-in functions are defined as the
functions whose functionality is pre-defined in Python. E.g., ​print().

2. User-defined functions- ​A function that you define yourself in a
program is known as a user-defined function. However, you cannot
use the Python keywords as function names.

Advantages of using functions in your code:
Functions are the standard way of modularizing your code in Python. The
biggest advantage of using functions in your code is its code reusability
since you can call that particular function in your code whenever it is
needed, rather than writing the entire code again and again.
Syntax:

def Function_Name (Parameters):
Statement_1
Statement_2
.
:
Statement_n
return [expression]

➔ “def”​ is the keyword used to define the function in Python.
➔ “Function_Name”​, enter the name of your function, use any name

that relates to that particular code/function.
➔ “(Parameters)” defines the particular arguments/parameters of

your function.
➔ Function definition must be terminated by using ​“:”​.
➔ “return” to return the value/output of that particular function into the

program where that particular function has been called. It's very
important to return something from a function otherwise it's not much
useful to modularize your code using functions.

Steps:
➢ Returning a single value from a particular function:

[​For better understanding of this concept take the function below
“​Function to calculate the length of a sequence” as an example.​]

● Declare a function, keeping the syntax in your mind, as:

def figure_out_length(receivedSequence):
length = len(receivedSequence)
return length
★ len()​ is a built-in function of Python.

[This function will receive the sequence from the main program and
will calculate the length of the received sequence and return the
length of the sequence to the main program.]

Note: ​Functions are always declared above the main program, in Python.

● In the main program, ask the user to enter the input sequence or you
can input a hardcoded sequence and store the sequence in a
variable.

● Call the function and use the variable_name as a parameter in the
function you’ve declared above, and declare a variable to store the
output of the function in the main function, as:

mySequence = input(“Enter Your Sequence:”)
mySeqLength = figure_out_length(mySequence)

Note: ​You must declare a variable in the main program to store the
returned value of the function, otherwise you won’t be able to get the
output.

● Print out the results on the output windows, as

print(mySequence, mySeqLength)
[It will print your sequence and sequence length respectively.]

Note: ​Since, Python is considered as a dynamic language which means
you cannot enter integer type data in the variable storing a string type data

type. So, if you’re not declaring a variable to be a string variable, it can be
an integer variable as well.
➢ Returning Multiple values from a particular function:

[​For better understanding of this concept take the function given
below “Function to calculate the charge and sequence length of a
protein” as an example.​]

● Declare a function, keeping the syntax in mind, as:

def getCharge(proteinSequnce):
“““ Return the net charge of a protein sequence ”””
myProt = proteinSequence.upper()
charge= -0.002
aminoCharge = {“Amino acid Charge library”}
for aminoAcid in myProt:

Charge += aminoCharge.get(aminoAcid, 0)
return charge, len(proteinSequence)

[This function will calculate the charge of your Protein and will also
calculate the length of the sequence.]

● Following table describes the function of each statement written
above in the function:

def getCharge(proteinSequnce): ➔ Defining your function in Python.

“““ Return the net charge of a protein
sequence ”””

➔ Description of your function.

myProt = proteinSequence.upper() ➔ Initializing the variable ​myProt​ and
converting the protein sequence in
upper case.

charge= -0.002 ➔ Calculation of charge on the protein.
 [for better understanding of this concept,
watch the previous video on ‘Protein

Charge Calculation’.]

aminoCharge = {“Amino acid Charge
library”}

➔ Adding amino acid charge library to
calculate charge on the protein
accordingly.

for aminoAcid in myProt:
Charge +=aminoCharge.get(aminoAcid,
0)

➔ For loop to calculate charge on the
entire sequence length of protein by
calculating charge on individual
amino acid residues.

return charge, len(proteinSequence) ➔ After calculation of charge and
sequence length, the values would be
returned to the main program, where
the function has been called.

● In the main program, declare two variables to store the returned

values from the function and call the function, as:

myCharge, myLength = getCharge(“Enter your Protein Sequence”)

● To print your output, call the the print() function, as:

print(myCharge, myLength)

● To print out the value of only one variable, use index method, as:

myCharge2 = getCharge(“Enter your Protein Sequence”) [0]
print(myCharge2)

● You can set a default value to a particular argument/parameter in the
Function, in order to reduce the chances of error. It is an important
step of code modularization. For example,

def getCharge(proteinSequence = “AKMPYTAVTTKKMMP”):

[In this way, if the user did not enter the input sequence, the program
will run automatically using the default sequence.]

Summary:
In this video we learned how to create functions in Python and how we can
use these user-defined functions to analyze the biological data. We learned
two different ways of returning values from the functions into the main
program. We also learned how to set a default value to a parameter in the
function in order to reduce the chances of errors in our code.

